Coupling Finite Difference Methods and Integral Formulas for Elliptic Problems Arising in Fluid Mechanics
نویسنده
چکیده
This article is devoted to the numerical analysis of two classes of iterative methods that combine integral formulas with finite-difference Poisson solvers for the solution of elliptic problems. The first method is in the spirit of the Schwarz domain decomposition method for exterior domains. The second one is motivated by potential calculations in free boundary problems and can be viewed as a numerical analytic continuation algorithm. Numerical tests are presented that confirm the convergence properties predicted by numerical analysis. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 000–000, 2004
منابع مشابه
Potential theory for initial-boundary value problems of unsteady Stokes flow in two dimensions
Integral equations have been of great theoretical importance for analyzing boundary value problems. There is a large amount of literature devoted to the classical potential theory and its applications on solving the boundary value problems of elliptic partial differential equations (see, for example, [5, 20, 23, 25, 26, 31, 32, 36, 37, 40]). For elliptic problems, integral equations have been c...
متن کاملOn the stability of a weighted finite difference scheme for wave equation with nonlocal boundary conditions ̊
Nonlocal problems is a major research area in many branches of modern physics, biotechnology, chemistry and engineering, which arises when it is impossible to determine the boundary values of unknown function and its derivatives. Increasingly often, there arise problems with nonlocal integral boundary conditions, especially in particle diffusion [1] and heat conduction [2, 3]. Partial different...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003